An Application of Fuzzy Time Series to Improve ISE Forecasting
نویسندگان
چکیده
The problem of fuzzy time series forecasting plays an important role in many scientific areas such as statistics and neural networks. While forecasting fuzzy time series, most of forecasting applications use the same length of intervals. The determination of length of intervals is significant and critical in fuzzy time series forecasting. The usage of convenient performance measure may also have an important affect for forecasting studies. MSE (Mean squared error) as a performance measure is widely used in many studies. The aim of this paper is to improve fuzzy time series forecasting by using different length of intervals with neural networks according to various performance measures. For this reason, we take ISE (Istanbul stock exchange) national-100 index as a large data set for forecasting. We use various performance measures such as MSE, RMSE (Root mean squared error), MAE (Mean absolute error) and MAPE (Mean absolute percentage error) to compare forecasting performances with different length of intervals. The empirical results show that the most convenient length of intervals can be chosen as 300 by comparing overall performance of MSE, RMSE, MAE and MAPE by using neural networks. Key-Words: Forecasting, Fuzzy time series, Neural networks, ISE national-100 index, Performance measures, Length of intervals.
منابع مشابه
AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملTime Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization
Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملResidual analysis using Fourier series transform in Fuzzy time series model
In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...
متن کاملOverview and Comparison of Short-term Interval Models for Financial Time Series Forecasting
In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...
متن کامل